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Abstract
An exact solution for a high-speed deterministic traffic model with open
boundaries and synchronous update rule is presented. Due to the strong
correlations in the model, the qualitative structure of the stationary state can
be described for general values of the maximum speed. It is shown in the case
of vmax = 2 that a detailed analysis of this structure leads to an exact solution.
Explicit expressions for the stationary state probabilities are given in terms of
products of 24 × 24 matrices. From this solution an exact expression for the
correlation length is derived.

PACS numbers: 4570V, 0520, 0550, 0210, 0560, 0565

1. Introduction

One-dimensional driven diffusive processes have proven to be an interesting playground for
the study of non-equilibrium behaviour [1–5]. Of great interest is the fact that the study of
many stationary state properties has come within reach of exact analytical methods since the
solution of the asymmetric simple exclusion process (ASEP) with random sequential update
and open boundaries [6–9]. An important analytical tool in the study of these diffusive systems
is the matrix product method, that appeared earlier in the study of lattice animals [10] and the
ground states of antiferromagnets [11, 12]. Its use in [9] for the ASEP has boosted a lot of
research on a variety of diffusion models, among which are, for example, the ASEP with
other updates [13–19], multi-species models [20–29], multi-lane traffic [30] and the partially
asymmetric exclusion process [31–34]. For recent reviews of many of the exact results for the
ASEP see [35–37].

It has been shown for different dynamical update rules, that the stationary state of a
stochastic model can always be written as a matrix product [38–40], although no proof is given
for the synchronous update. This mere fact by no means solves the problem of finding the
stationary state, but it provides a basis for a systematic study via the representation theory of
non-linear algebras [25, 26, 32]. In almost all the cases studied so far, the algebra has been
quadratic, which is peculiar to systems with nearest neighbour interactions only. Only for
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synchronous ASEP, non-trivial representations of an algebra of higher degree have been used,
i.e. either quartic [17], where the matrices depend on one site, or cubic [18] in the case where
the matrices depend on two sites.

Recently the asymmetric exclusion process with next-nearest neighbour interactions has
been studied by various methods [41], but in the case of open boundaries exact results have been
obtained only on a special line. In an initial attempt to find exact stationary states for models
with long range interactions and open boundaries, a deterministic high-speed asymmetric
exclusion model is studied. Particles are allowed to hop over more than one lattice spacing per
time step, and they enter the system at the left and leave at the right. Furthermore, the system
will be subject to a synchronous dynamical update rule. For such dynamics the correlations
are the strongest, which is not only interesting from a physical point of view, but actually helps
solve the problem. The correlations are so strong that one can describe the stationary state
qualitatively in a simple way by identifying so-called Garden of Eden states [42, 43].

The exact stationary state is given in matrix product form for the case where particles may
hop over two lattice sites. The matrices depend on three sites and it is shown that they should
satisfy an algebra at least quartic in degree. The model is solved by making an Ansatz for the
form of the matrices based on the qualitative observations for the stationary state. It is then
shown that the submatrices in this Ansatz must satisfy certain relations for the matrix product
state so as to solve the stationary master equation. A solution of these relations is found with
the help of explicit calculations for small systems.

This paper is organized as follows. The model is defined in detail in section 2. The exact
stationary state is calculated in section 3 and some results on the phase diagram are discussed
in section 4.

2. Definition of the model

In this paper we study a one-dimensional asymmetric particle hopping model where particles
in the bulk hop to the right. Particles may enter the system at the left and leave at the right.
In the bulk all particles will move with their maximum possible speed, which is either given
by the speed limit vmax, or is given by the distance to the next particle to avoid collisions.
There will be no stochasticity in the bulk and particles always achieve their maximum possible
speed instantaneously. In the case of periodic boundary conditions this model is known as the
deterministic Fukui–Ishibashi model [44], for which some exact results are known [45].

With open boundaries, particles will be allowed to enter the system on the initial vmax

sites and may leave the system from the final vmax sites. The choice of boundary conditions
can have a profound influence on the behaviour of the system. If, for example, particles were
allowed to enter only at the first site, the density profile for vmax > 1 in the free flow phase
would show a strong sublattice dependence. Moreover, in this case the system would not be
able to reach its maximum possible flow, since particles would have to wait an extra time step
due to the synchronous update before the first site is unblocked. In the case of vmax = 2, the
specific boundary conditions we will use here are similar to those of the random sequential
model A of [40]. If the two sites at the left boundary are empty, a particle can enter on the
second site with probability α2, and on the first site with probability α1(1 − α2). The sites
remain empty with probability (1 − α1)(1 − α2). If a particle is already present on the second
site, a probability α3 is given for a particle entering on the first site. At the right boundary, a
particle at the last site will leave the system with probability β1. If the last site is empty, but a
particle is present on the penultimate site, it will leave the system with probability β2. In terms
of Boolean variables τi that have the value of 1 for a particle and 0 for a hole, the dynamical
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rule for the bulk can be written as

τ ′
i = τi−2σi−1σi + τi−1σiτi+1 + τiτi+1 (1)

where the prime denotes time incremented by 1 and σ = 1 − τ . At the boundaries the
additional Boolean variables α̂ and β̂ are used that have time averages equal to α and β. At
the left boundary the rules are

τ ′
1 = τ1τ2 + α̂1(1 − α̂2)σ1σ2 + α̂3σ1τ2 (2)

τ ′
2 = τ1σ2τ3 + τ2τ3 + α̂2σ1σ2 (3)

and at the right boundary we have

τ ′
L = τL−2σL−1σL + (1 − β̂1)τL + (1 − β̂2)τL−1σL. (4)

The currents are defined by the continuity equation

τ ′
i = τi + ji−1 − ji (5)

and are given by

j0 = α̂3σ1τ2 + (1 − (1 − α̂1)(1 − α̂2))σ1σ2

j1 = τ1σ2 + α̂2σ1σ2

ji = τiσi+1 + τi−1σiσi+1

jL = β̂1τL + β̂2τL−1σL.

(6)

For technical convenience we will put 〈β̂1〉 = 〈β̂2〉 = β, and 〈α̂1〉 = 〈α̂2〉 = 〈α̂3〉 = α in the
rest of this paper. All arguments, however, hold for the more general case. The calculation
becomes more cumbersome and one has to discriminate between even and odd sublattices.

3. The stationary state

In the following discussion, the relative weight of a particular configuration {τ1, . . . , τL} in the
stationary state will be denoted by P(τ1, . . . , τL). Once all relative weights are determined,
the normalization ZL can be calculated via

ZL =
∑
{τ }
P(τ1, . . . , τL). (7)

To derive some general conclusions about the stationary state, it is helpful to consider the
extreme cases α = 1 and β = 1 first.

3.1. Free flow

Since we are considering a deterministic model, spontaneous jams do not occur. Jams will only
build up from obstacles at the right boundary. Pure free flow configurations are obtained by
removing these obstacles, i.e. β = 1. The dynamical rule at the right boundary then becomes

τ ′
L = τL−2σL−1σL. (8)

Since there will be no jams in the stationary state, its bulk dynamics is given by

τ ′
i = τi−2 (9)

and it follows that the master equation can be written as

P(τ1, . . . , τL) =
∑
µ,µ′
pf(τ1τ2τ3)pf(τ2τ3τ4)P (τ3, . . . , τL, µ,µ

′) (10)
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where

pf(000) = (1 − α) pf(100) = α
pf(010) = 1 pf(001) = 1

pf(ττ
′τ ′′) = 0 otherwise.

(11)

This equation can be solved by the Ansatz

P(τ1, . . . , τL) = R(τL−1τL)

L−2∏
i=1

pf(τiτi+1τi+2) (12)

and we find

R(00) = 1 R(10) = R(01) = α. (13)

3.2. Jammed flow

Pure jammed flow configurations are obtained by setting α = 1. From dynamical rules it
follows that in this case configurations with the sequence 000 in it do not occur in the stationary
state. This means that the bulk and left boundary dynamics may be replaced by the simple rule

τ ′
i = τi+1. (14)

The master equation for this case is

P(τ1, . . . , τL) =
∑
µ

pj(τL−2τL−1τL)P (µ, τ1, . . . , τL−1) (15)

where

pj(100) = β pj(010) = β
pj(001) = 1 pj(110) = β
pj(101) = 1 − β pj(011) = 1 − β
pj(111) = 1 − β pj(ττ

′τ ′′) = 0 otherwise.

(16)

Again this equation can be solved by a simple Ansatz

P(τ1, . . . , τL) = L(τ1τ2)
L−2∏
i=1

pj(τiτi+1τi+2). (17)

In this case we find

L(00) = β2 L(10) = L(01) = β L(11) = 1 − β. (18)

3.3. The general case

As mentioned already, spontaneous jams will not occur since we are considering a deterministic
model. Following a similar line of reasoning as in [43], this can be deduced from the
microscopic dynamics (1)–(4).

(i) The sequence 1100 can only arise from the same sequence shifted by one lattice unit

(τiτi+1σi+2σi+3)
′ = τ ′

i τi+1τi+2σi+3σi+4. (19)

Since

(τL−3τL−2σL−1σL)
′′′ ∼ (τL−2τL−1σL)

′′ ∼ (τL−1τL)
′ = 0 (20)

it follows that configurations with the sequence 1100 do not occur in the stationary state.
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(ii) Similarly, a sequence 10 100 can only arise from the same sequence shifted by one lattice
unit or from a sequence with 1100 in it

(τiσi+1τi+2σi+3σi+4)
′ = (τi−2σi−1 + τi−1σi)(τi+1σi+2τi+3σi+4σi+5)

+τ ′
i σi+1τi+2τi+3σi+4σi+5. (21)

Since

(τL−4σL−3τL−2σL−1σL)
′′′ ∼ (τL−2σL−1τL)

′ = 0 (22)

it follows from the previous observation that configurations also with the sequence 10 100
do not occur in the stationary state.

It thus follows that each configuration can be divided into three parts. The first part is a
free flow part where there are at least two holes between successive particles. This part ends
at site f which denotes the last site of the last 000 sequence of a configuration. The dynamics
for this part is given by

τ ′
i = τi−2 3 � i � f. (23)

The third part starts at site j which denotes the first site of the first jammed configuration, i.e.
a 11 or a 101 sequence, whichever comes first. This part is a jammed flow part where there
are at most two holes between successive particles. For this part the dynamics is

τ ′
i = τi+1 j � i � L− 1. (24)

In between these two parts there may be a configuration of 100 sequences of arbitrary length.
A general configuration may thus be written as

τ1 . . . τf (100)nτj . . . τL. (25)

This analysis can be performed in a similar way for models with higher vmax values. The free
flow part will end with vmax + 1 zeros and the intermediate part will consist of a sequence of
blocks, where each block starts with a 1 followed by vmax zeros. The jammed flow part starts
with any of the local jammed configurations. These are those sequences where there are less
than vmax zeros in between two 1s.

The master equation for the stationary state can be written explicitly in this notation. In
the case where the jammed flow starts with a 11 pair it is given by

P(τ1 . . . τf (100)n11τj+2 . . . τL) = pf(τ1τ2τ3)pf(τ2τ3τ4)pj(τL−2τL−1τL)

×
[
P(τ3 . . . τf (100)n+111τj+2 . . . τL−1)

+
n∑
p=0

P(τ3 . . . τf (100)p001(100)n−p11τj+2 . . . τL−1)

+
n∑
p=0

P(τ3 . . . τf (100)p010(100)n−p11τj+2 . . . τL−1)

]
. (26)

A slightly different equation is obtained when the jammed flow starts with a 101 sequence

P(τ1 . . . τf (100)n101τj+3 . . . τL) = pf(τ1τ2τ3)pf(τ2τ3τ4)pj(τL−2τL−1τL)

×
[
P(τ3 . . . τf (100)n+1101τj+3 . . . τL−1)

+
n∑
p=0

P(τ3 . . . τf (100)p001(100)n−p101τj+3 . . . τL−1)
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+
n∑
p=0

P(τ3 . . . τf (100)p010(100)n−p101τj+3 . . . τL−1)

+P(τ3 . . . τf (100)n+1011τj+3 . . . τL−1)

]
. (27)

Similar equations are obtained when f and/or j are close to the boundary.
To solve (26) and (27) we will employ the powerful matrix product method [9]. The

relative probabilities for the stationary are written as

P(τ1, . . . , τL) = 〈L(τ1τ2)|
L−2∏
i=1

M(τiτi+1τi+2)|R(τL−1τL)〉. (28)

Due to the specific form of each configuration, the following triangular form for the matrices
M suggests itself and is similar to the vmax = 1 case [18]:

M(ττ ′τ ′′) =
(
pf(ττ

′τ ′′)F S(ττ ′τ ′′)
0 pj(ττ

′τ ′′)J

)
(29)

where pf(ττ
′τ ′′) and pj(ττ

′τ ′′) are defined by (11) and (16), respectively. The matrices F
and J are yet to be determined. While for vmax = 1 they are just scalars given by F = β
and J = α, they will be more complicated in the present case. The matrices S(ττ ′τ ′′)
will solve the dynamical equations for the bulk. They are defined on the interface only and
S(000) = S(110) = S(101) = S(011) = S(111) = 0. A similar decomposition as in (29)
will be used for the boundary vectors

〈L(τ1τ2)| = (〈LF(τ1τ2)|, 〈LJ(τ1τ2)|) (30)

and likewise for |R(τL−1τL)〉.
To make the following more transparent, we will use the notation S1 = S(100),

S2 = S(010) and S3 = S(001). Upon substitution one quickly concludes that (26) and (27)
are equivalent if

S2J = αF(S2 + (1 − α)S3). (31)

Let us assume that this relation is satisfied and concentrate on (26). Substituting (29) in (26)
one finds that

〈LF(00)| = 〈LF(10)| = 〈LF(01)| = 〈LF|
|RJ(00)〉 = |RJ(10)〉 = |RJ(01)〉 = |RJ(11)〉 = |RJ〉

(32)

and that the bulk matrices must satisfy
n−1∑
p=0

αpβ2(n−p−1)F 3p+2
(
β2S3J

2 + βFS2J + F 2S1
)
J 3(n−p)−1 + αnF 3n+2S3J

=
n∑
p=0

αpβ2(n−p)F 3p
(
β2S3J

2 + βFS2J + F 2S1
)
J 3(n−p)+1 + αn+1F 3(n+1)S3

+(1 − α)2(1 − β)
n∑
p=0

αpβ2(n−p)F 3p+2S3J
3(n−p)+1

+(1 − α)(1 − β)
n∑
p=0

αpβ2(n−p)F 3p+1 (βS3J + FS2) J
3(n−p)+1. (33)

The requirement that the four sums in (33) cancel term by term leads to the following equation:

F 2
(
β2S3J

2 + βFS2J + F 2S1
) = β2

(
β2S3J

2 + βFS2J + F 2S1
)
J 2

+β2(1 − α)(1 − β)F ((1 − α)FS3 + βS3J + FS2) J
2. (34)
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For the remaining terms in (33) to cancel, the following equation must be satisfied:

F 2S3J = αF 3S3 +
(
β2S3J

2 + βFS2J + F 2S1
)
J

+(1 − α)(1 − β)F ((1 − α)FS3 + βS3J + FS2
)
J. (35)

Altogether we get three relations, (31), (34) and (35). These can be rewritten as

S2J = αF(S2 + (1 − α)S3)

0 = β(αβS3 + S2)J + FS1

αF 2S3J = αβ2S3J
3 + F((1 − α)(1 − β)S2 + αβ(1 − α − β)S3)J

2 + α2F 3S3.

(36)

Besides these bulk relations, there are boundary relations that follow from considerations of
cases where f and/or j is close to the boundary. They are not particularly illuminating and are
listed in appendix A. It is important to note that if we manage to solve these boundary relations
such that (32) is also satisfied, a solution of (36) then ensures stationarity of the matrix product
state (28) for arbitrary system sizes. This also means that (32) and (36) enable us to extrapolate
knowledge of small systems to arbitrary large ones, which helps us to find a solution of the
relations we have obtained. To find a representation for the matrices F and J , we employ
the usual strategy for these type of problems: to consider explicit solutions for small systems
and to try to find relations between them. Using the Ansatz (29) for the particular form of the
matrices, we then deduce that the following algebraic relations hold:

0 = F 3 − β(1 − α − αβ)F 2 − αβ2(2 − α)F − α2β4

= (F − β)(F + αβ)(F + αβ2)− αβ2(1 − α)(1 − β)F (37)

while J satisfies

0 = J 3 − α(2 − α)J 2 + α2β(1 − α − αβ)J + α4β2

= (J − α)(J − αβ)(J − α2β) + α(1 − α)(1 − β)J 2. (38)

When considered as polynomials each of these equations has three solutions. These may be
thought of as being the eigenvalues ofF andJ , respectively. One thus finds a three-dimensional
representation for F and J for which we have to check that it is compatible with the other
relations. This is indeed the case and two examples of explicit representations for all objects
are given in appendix B. For α, β �= 0, F will have non-zero eigenvalues and thus is invertible.
It is then found that (38) is satisfied by choosing J = −α2β2F−1.

Although the solutions of the cubic equation (37) are awkward expressions in terms of
α and β, they are all real for 0 � α, β � 1. Let λn denote the eigenvalues of F and
µn = −α2β2/λn the eigenvalues of J . They can be written in the following way:

λn = a + ρ cos

(
φ + 2πn

3

)
(39)

µn = b + ρ ′ sin

(
φ′ − (2n + 1)π

3

)
(40)

with λ1 < λ2 < 0 < λ3 and µ3 < 0 < µ1 < µ2 for 0 < α, β < 1. Here, a, b, ρ, ρ ′, φ and φ′

are real functions of α and β defined in appendix B.1.

4. Results

In this section some exact results concerning the phase diagram are calculated. In the case of
the purely free flow and jammed flow phases, the current and density profiles can be calculated
easily. For general values of the boundary rates the correlation length is calculated and it is
shown that it diverges on a special line in the phase diagram.
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4.1. Free and jammed flow

We have seen that the stationary state in both the free flow case (β = 1) and the jammed flow
case (α = 1) is a simple product. This means that correlations are absent and the density
profile is flat in both cases. The values of the current and the density are easily calculated and
given by

ρF = α

1 + 2α
jF = 2α

1 + 2α
(41)

ρJ = 1 − β
1 − β3

jJ = β(1 − β2)

1 − β3
. (42)

It follows that in the free flow phase jF = 2ρF. As expected all particles move with a maximum
speed of vmax = 2. In the jammed flow phase, the fundamental diagram is given by jJ = 1−ρJ.
In this case all holes move with their maximum speed which is equal to 1. Note that the values
of the two currents are equal if 2α = β(1 + β). We will see in the next section that this line is
the coexistence line in the general phase diagram.

4.2. The general case

To facilitate summing over the stationary state probabilities, the local free and jammed flow
configuration weights pF(ττ

′τ ′′) and pF(ττ
′τ ′′) are collected into matrices Pf and Pj with the

elements (
Pf,j

)
ττ ′,τ ′τ ′′ = pf,j(ττ

′τ ′′)
= 0 otherwise. (43)

Likewise, the matrix S and vectors 〈L| and |R〉 are defined

Sττ ′,τ ′τ ′′ = S(ττ ′τ ′′) 〈L|ττ ′ = 〈L(ττ ′)| |R〉ττ ′ = |R(ττ ′)〉. (44)

The advantage of this notation is that, for example, the normalization ZL can be written
compactly as

ZL =
∑
{τ }
P(τ1, . . . , τL) = 〈L|ML−2|R〉 (45)

whereM is a 24 × 24 matrix given by

M =
(
Pf ⊗ F S

0 Pj ⊗ J
)
. (46)

To perform the calculations, it is worth mentioning the following two intermediate results:

〈LF| (Pf ⊗ F)n = αβ2(1 − α)(1 − β)(1, 1, 1, 0)⊗
(
λn+1

1

λ1 − β ,
λn+1

2

λ2 − β ,
λn+1

3

λ3 − β
)

(47)

((
Pj ⊗ J )n |RJ〉

)t = − β

α"
(1, 1, 1, 1)⊗ (

µn+2
1 , µn+2

2 , µn+2
3

)
(48)

where the discriminant " is defined by

" = (λ1 − λ2)(λ2 − λ3)(λ3 − λ1). (49)

After some laborious manipulations, the normalization is then found to be

ZL = β2(1 − α)(1 − β)
α(2α − β(1 + β))"

[
α2β(1 − α)(1 + 2α)

3∑
i=1

λi + β2

λi − β (λi+1 − λi+2)λ
L
i

+(1 − β3)

3∑
i=1

(µi − 2α)(µi − α2)

(µi − α)2 (µi+1 − µi+2)µ
L+1
i

]
(50)
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where λ3+i = λi and µi+3 = µi . This expression is well defined for all α and β. To see this,
the only non-trivial case we have to consider is 2α = β(1 +β). All other explicit poles in (50)
are equivalent to (1−α)(1−β) = 0. At 2α = β(1 +β) the solutions λi simplify dramatically.
In particular λ1 = −β2 while λ2 and λ3 are the roots of a quadratic equation. Furthermore,
we find that λ3 = µ2 and λ2 = µ3. These values imply that the expression between brackets
in (50) has a zero that precisely cancels the pole at 2α = β(1 + β).

Unfortunately the calculations using the present notation are still rather intricate and
laborious and to date no other explicit expressions for the general case have been obtained.
The phase behaviour of the model, however, is similar to that of the case vmax = 1 [17,18,41].
From the explicit form of the normalization it is clear that the correlation length will be
determined by ratio of its largest contributions and we find

ξ−1
F = ln

λ3

µ2
= ln

λ1

−β2
for 2α < β(1 + β) (51)

ξ−1
J = −ξ−1

F for 2α > β(1 + β). (52)

There is a low-density phase for 2α < β(1 + β) and a high density phase for 2α > β(1 + β).
In each case, the bulk density will have the free and jammed flow value, respectively. At the
boundaries there will be exponential corrections of which the correlation lengths are given
by (51) and (52). The curve 2α = β(1 + β) is a coexisting curve on which the correlation
length diverges. The instantaneous density profile is a shock profile resulting in an average
linear profile. Across this curve, the average bulk density has a jump of size ρJ − ρF.

As we have seen above, the locus of the coexisting curve is obtained by equating the
values of the current for the two extreme cases: the free and jammed flow phases. This seems
to be a general feature of ASEPs and supports the ideas of Kolomeisky et al [46] for the case
of discrete time and parallel update. In the present model, however, the dependence of the
correlation length on α and β does not decouple, as is the case for vmax = 1 [18] and the
random sequential ASEP [8]. It is therefore quite amazing that the locus of the coexisting
curve still can be obtained by a simple mean field analysis.

5. Conclusion

An exact solution for the stationary state of a deterministic traffic model with vmax = 2 is
presented. Apart from the absence of symmetry due to the lack of a particle–hole duality, the
phase diagram is qualitatively similar to that of the case with vmax = 1, as expected. This
solution might be a first step towards an exact solution of a realistic traffic model.

The stationary state is presented in a matrix product form, where the matrices depend
on three sites and are 24-dimensional. The matrix product method has been shown to work
extremely well in those cases where the matrices are either infinite-dimensional or of small
finite dimension. Its shortcomings are obvious when the matrices are of large finite dimension
and the eigenvalues become solutions of polynomials of high degree. As in the present case,
it will still be a tedious technical exercise to derive exact expressions for expectation values
and correlation functions from the exact solution.

Although many relations between matrix elements have been given, no proper matrix
algebra has been derived. It will be interesting to find this underlying algebra, which at
least should be of degree 4 as suggested by equation (36). This algebra may provide more
convenient ways of deriving expectation values and correlation functions than the method used
in this paper. The appearance of cubic roots, however, will remain.

An obvious and interesting extension of the model will be to include stochasticity in the
bulk hopping rates. This can be done as in the Fukui–Ishibashi model [44], but more interesting
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perhaps will be the aggressive driver Nagel–Schreckenberg model [47], which is closer to real
traffic but might be still simple enough to be analytically tractable.

As a final remark one should mention that because of the long-range interaction it is
unlikely that these models are integrable in the sense that there would be an underlying Yang–
Baxter relation. The paradigmatic ASEP, however, is integrable since it is closely related to
the integrable XXZ spin chain. It would be interesting to compare the matrix product ground
states of non-integrable systems with those of integrable ones [37, 48].

Acknowledgments

This work has been supported by the Australian Research Council. I thank M T Batchelor and
V Mangazeev for valuable discussions, and am much indebted to A Schadschneider for his
continuous support and encouragement.

Appendix A. Boundary relations

In the cases where f � 3 extra boundary relations are needed for (28) to be the stationary
state. The following equations can be deduced from the master equation in those cases

• f = 3:

α〈LF|FS3J = αβ2〈LJ(01)|J 3 + (1 − α)(1 − β)〈LF|S2J
2

+αβ(1 − α − β)〈LF|S3J
2 + α2〈LF|F 2S3. (53)

• f = 2:

αβ(1 − β)〈LJ(01)|J = β〈LJ(10)|J + 〈LF|S1. (54)

α〈LF|S3J = αβ2〈LJ(01)|J 3 + α(1 − α)(1 − β)(〈LF|S2 + (1 − α)〈LF|S3)J

+αβ(1 − β)〈LJ(01)|J 2 + α2〈LF|FS3. (55)

• f = 1:

β2〈LJ(01)|J 2 + 〈LF| (βS2J + FS1) = β2(1 − β) ((1 − α)〈LJ(01)| + 〈LJ(10)|) J 2 (56)

〈LJ(01)|J = α〈LF|S3 + (1 − β) ((1 − α)〈LJ(01) + 〈LJ(10)|) J. (57)

• f = 0:

〈LJ(11)| = α
β
(1 − β)〈LJ(01)| 〈LF(11)| = 0 (58)

β2〈LJ(11)|J 2 = β〈LJ(10)|J 2 + 〈LF|S1J. (59)

Similarly, when j � L− 1 extra relations are needed. These are

• j = L− 1:

S2|RJ〉 = α(1 − α)|RF(00)〉. (60)

• j = L:

F 2S3|RJ〉 = αF 3|RF(00)〉 + (β2S3J
2 + βFS2J + F 2S1)|RJ〉

+(1 − α)(1 − β)F ((1 − α)FS3 + βS3J + FS2)|RJ〉. (61)

• j = L + 1:

(1 − (1 − α)2)F 2|RF(00)〉 = β(βS3J + FS2 + (1 − α)FS3)|RJ〉. (62)
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Appendix B. Representations

B.1. The diagonal representation

In this subsection an explicit representation is given in which F and J are diagonal. Let λ1, λ2

and λ3 denote the three solutions of the equation

λ3 − 3aλ2 − 3bλ− αβ2c = 0 (63)

where

a = (λ1 + λ2 + λ3)/3 = β(1 − α − αβ)/3
b = −(λ1λ2 + λ2λ3 + λ3λ1)/(3β

2) = α(2 − α)/3
c = λ1λ2λ3/β

2 = α2β2.

(64)

Then, F and J are given by

F = diag{λ1, λ2, λ3} J = −α2β2diag{λ−1
1 , λ

−1
2 , λ

−1
3 }. (65)

The matrices Si are given by

S1 = α2β2

( 0 −λ1 − λ2 λ1 + λ3

λ1 + λ2 0 −λ2 − λ3

−λ1 − λ3 λ2 + λ3 0

)

S2 = (1 − α)
( 0 −λ1λ2 λ1λ3

λ1λ2 0 −λ2λ3

−λ1λ3 λ2λ3 0

)

S3 =
( 0 λ1λ2 + αβ2 −λ1λ3 − αβ2

−λ1λ2 − αβ2 0 λ2λ3 + αβ2

λ1λ3 + αβ2 −λ2λ3 − αβ2 0

)
.

(66)

The corresponding boundary vectors are given by

〈LF| = αβ2(1 − α)(1 − β)
(
λ1

λ1 − β ,
λ2

λ2 − β ,
λ3

λ3 − β
)

〈LF(11)| = 0
〈LJ(10)| = (

(λ1 − β)(λ2 − λ3)((2α − 1)λ1 + α2β), (λ2 − β)(λ3 − λ1)

((2α − 1)λ2 + α2β), (λ3 − β)(λ1 − λ2)((2α − 1)λ3 + α2β)
)

〈LJ(01)| = αβ2(1 − α)(1 − β)
(
λ1(λ2 − λ3)

λ1 + αβ2
,
λ2(λ3 − λ1)

λ2 + αβ2
,
λ3(λ1 − λ2)

λ3 + αβ2

)
〈LJ(11)| = α

β
(1 − β)〈LJ(01)

(67)

and the right boundary vectors are given by

|RJ〉 = −α
3β5

"

(
λ−2

1 , λ
−2
2 , λ

−2
3

)
|RF(00)〉 = − β

"
(λ1(λ2 − λ3), λ2(λ3 − λ1), λ3(λ1 − λ2))

|RF(10)〉 = |RF(01)〉 = |RF(11)〉 = 0

(68)

where the discriminant " is defined in (49).
The solutions of (63) are all real for 0 < α, β < 1 and can be written in the following

form:

λn = a + ρ cos

(
φ + 2πn

3

)
(69)
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where

ρ = 2
√
a2 + β2b φ = arctan ("/C) . (70)

The discriminant " and C are given by

" =
√

27ρ6/16 − C2 C = 3
√

3(2a3 + β2(c + 3ab)). (71)

Similarly, the solutions µn = −α2β2/λn of (38) can be written as

µn = b + ρ ′ sin

(
φ′ − (2n + 1)π

3

)
(72)

where

ρ ′ = 2
√
b2 − α2a φ′ = arctan

(
C ′/"

)
. (73)

C ′ = 3
√

3β2(2b3 − α2(c + 3ab))/α2. (74)

B.2. A simple representation

Although the eigenvalues of F and J , or equivalently the roots of (37) and (38), are awkward
expressions, an example of a representation with simple matrix elements is given by

F = β
( 1 0 α

1 − α −αβ α(1 − α)
0 1 − β −α

)
J = α

( 0 αβ 0
β 1 − α 1 − β
0 1 − α 1

)
. (75)

The corresponding representations for S1, S2 and S3 are given by

S1 = − αβ2

1 − β

(
β(1 − α) 1 − α 1 − β
αβ(1 − β) α(1 − α)(1 − β) α(1 − β)2
αβ(1 − α) α(1 − α)2 α(1 − α)(1 − β)

)

S2 = β2

1 − β

( 1 − α 1 − α 0
0 α(1 − α)(1 − β) 0

α(1 − α) α(1 − α)2 0

)
S3 = β

( 0 1 − α 1
0 −αβ 0
0 α(1 − α) α

)
.

(76)

The left boundary vectors in this representation are represented by

〈LF| = (1, 1 − α, 0)
〈LJ(10)| = 1

1 − β (β(1 − α), (1 − α)(α + β − αβ), α(1 − β))
〈LJ(00) = 0 〈LJ(01)| = (0, 1 − α, 1)
〈LJ(11)| = α

β
(1 − β)〈LJ(01)

(77)

and the right boundary vectors are given by

|RJ〉 = (0, 1 − β, 1)
|RF(10)〉 = |RF(01)〉 = |RF(11)〉 = 0 |RF(00)〉 = β

α
(1, 0, α).

(78)

This representation is convenient for calculations for small system sizes. For larger system
sizes it is more useful to use a representation in which F and J are diagonal. The price one
has to pay is that the matrix elements will be more complicated because they are cubic roots.
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